Abstract

A broad class of optimization problems can be cast in composite form, that is, considering the minimization of the composition of a lower semicontinuous function with a differentiable mapping. This paper investigates the versatile template of composite optimization without any convexity assumptions. First- and second-order optimality conditions are discussed. We highlight the difficulties that stem from the lack of convexity when dealing with necessary conditions in a Lagrangian framework and when considering error bounds. Building upon these characterizations, a local convergence analysis is delineated for a recently developed augmented Lagrangian method, deriving rates of convergence in the fully nonconvex setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.