Abstract
Minimization is a reoccurring theme in many mathematical disciplines ranging from pure to applied ones. Of particular importance is the minimization of integral functionals that is studied within the calculus of variations. Proofs of the existence of minimizers usually rely on a fine property of the involved functional called weak lower semicontinuity. While early studies of lower semicontinuity go back to the beginning of the 20th century the milestones of the modern theory were set by C.B. Morrey Jr. in 1952 and N.G. Meyers in 1965. We recapitulate the development on this topic from then on. Special attention is paid to signed integrands and to applications in continuum mechanics of solids. In particular, we review the concept of polyconvexity and special properties of (sub)determinants with respect to weak lower semicontinuity. Besides, we emphasize some recent progress in lower semicontinuity of functionals along sequences satisfying differential and algebraic constraints which have applications in elasticity to ensure injectivity and orientation-preservation of deformations. Finally, we outline generalization of these results to more general first-order partial differential operators and make some suggestions for further reading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.