Abstract
Prox-regularization algorithms for solving generalized fractional programs (GFP) were already considered by several authors. Since the standard dual of a generalized fractional program has not generally the form of GFP, these approaches can not apply directly to the dual problem. In this paper, we propose a primal-dual algorithm for solving convex generalized fractional programs. That is, we use a prox-regularization method to the dual problem that generates a sequence of auxiliary dual problems with unique solutions. So we can avoid the numerical difficulties that can occur if the fractional program does not have a unique solution. Our algorithm is based on Dinkelbach-type algorithms for generalized fractional programming, but uses a regularized parametric auxiliary problem. We establish then the convergence and rate of convergence of this new algorithm.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have