Abstract
With a focus on new researches in the area of intelligent transportation systems (ITS), an efficient approach has been investigated here. Based on the present view point, analysis of traffic signs are first considered via intelligence based approach, which is carried out through three main stages including detection, tracking and recognition, respectively, in this research. The key role of detection is to identify traffic signs by classification of road sign shapes in accordance with their signatures. This classification consists of four different shapes of circle, semicircle, triangle and square, as well. The linear classification of traffic sign is also carried out via support vector machine (SVM) by using one against all (OAA), since the present SVMs classifiers realized via linear kernel. The next step is to track traffic sign. It should be noted that this technique is now developed to reduce the searching mode in case of the whole area to be optimized its computational processing, consequently. This research work is investigated by realizing Kalman filter approach, where, finally, in recognition step, a feature of the region of interest (ROI) has been extracted for SVM classification. Histogram of oriented gradient (HOG) is realized in organizing the approach, as long as Gaussian kernel is also developed for non-linear SVM classifier.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have