Abstract
Comets seem to be composed of matter, which is supposed to have the same molecular composition as protosolar nebula. Although there are no unbiased evidence that cometary nuclei retain the molecular composition inherited from the protosolar cloud, the observed properties of comets indicate that there is at least a resemblance between cometary composition and the material properties of dense interstellar clouds. Therefore the origin of comets could be searched in the cold stages of the protosolar nebula and molecular abundances of grain mantles in this nebula may be similar to those in the cometary dust. It is suggested that comets may contain pristine, virtually unaltered protosolar material and their study might be very relevant way to more information about processes in early stages of the solar nebula. Our knowledge about composition of the cometary nucleus is still relatively scarce, but we can partly deduce it from data obtained either by ground-based spectroscopy or by “in situ” mass spectrometry from space experiments. Most important were the discovery of fluffy CHON particles composed partly or even completely from compounds containing light elements. No consensus concerning the presence of interstellar pristine matter in comet has been reached from various approaches to determine the relationship between comets and interstellar grains. Most of these studies are based on infrared spectroscopy. Another method is the comparison on the chemical models of the protosolar nebula with the volatile compounds of the cometary nuclei. Both gas-phase and grain-surface chemistry are considered and initial gas-phase atomic abundances are assumed to be protosolar. The cometary matter is certainly not identical with the typical material of dense interstellar cool dense clouds, but it is closer to it than any other type of matter in solar system so far accessible to us. The data from comets combined with models of chemical evolution of matter in environment similar as prevailed the early stage of presolar nebula may at least impose constrains on the condition for comet formation. Here presented study is a preliminary contribution to such studies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have