Abstract

Comprehending the effects of synthetic nanomaterials on natural microorganisms is critical for the development of emerging nanotechnologies. Compared to artificial inactivation of microbes, the up-regulation of biological functions should be more attractive due to the possibility of discovering unexpected properties. Herein, a nanoengineering strategy was employed to tailor g-C3N4 for the metabolic regulation of algae. We found that surface protonated g-C3N4 (P-C3N4) as a nanopolymeric elicitor enabled the reinforced biological activity of Microcystis aeruginosa and Scenedesmus for harmful substances removal. Metabolomics analysis suggested that synthetic nanoarchitectures induced moderate oxidative stress of algae, with up-regulated biosynthesis of extracellular polymeric substances (EPS) for resisting the physiological damage caused by toxic substances in water. The formation of oxidative .O2– contributed to over five-fold enhancement in the biodecomposition of harmful aniline. Our study demonstrates a synergistic biotic-abiotic platform with valuable outcomes for various customized applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.