Abstract

The concept of incorporating foam fractionation in aerated bioreactors at wastewater treatment plants (WWTPs) for the removal of per- and polyfluoroalkyl substances (PFAS) has recently been proposed. The extent of PFAS enrichment in aerated bioreactors’ foams, as indicated by enrichment factors (EFs), has been observed to vary widely. Laboratory evidence has shown that factors affecting PFAS enrichment in foams include conductivity, surfactant concentrations and initial PFAS concentrations. However, real wastewaters are complex heterogenous matrices with physical, chemical and biological characteristics potentially contributing to the phenomenon of PFAS partitioning into foams. In this study, we characterised mixed liquor suspensions, including conductivity, filament content, aqueous PFAS concentrations, surface tension and total suspended solids concentrations (TSS) as well as foams, including bubble size and half-life. We used statistical tools – linear mixed-effects model – to establish relationships between PFAS enrichment in aerated bioreactor foams and the examined characteristics. We found that some of the examined characteristics, specifically filament content, surface tension and TSS concentrations measured in mixed liquor suspension and foam half-life, are negatively and significantly associated with the enrichment of longer chain PFAS (with perfluorinated carbon number ≥ 6). Of these, filament content is the important determinant of PFAS enrichment, potentially leading to an increase in, for example, perfluorooctanoic acid (PFOA) EF from 3 to 100 between typical filamentous and non-filamentous suspended biomass. However, enrichment of shorter chain PFAS (with perfluorinated carbon number ≤ 5) is negligible and is not affected by the characteristics that were measured. The findings of our study may serve as valuable information for the implementation of foam fractionation at WWTPs by elucidating the drivers that contribute to the enrichment of longer chain PFAS, under conditions typically found at WWTPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.