Abstract

The presence of pathogenic fungal biofilms in drinking water distribution systems poses significant challenges in maintaining the safety of drinking water. This research delved into the formation of Aspergillus niger (A. niger) biofilms and evaluated their susceptibility to inactivation using combinations of ultraviolet light emitting diodes (UV-LEDs) with chlorine-based disinfectants, including UV-LEDs/chlorine (Cl2), UV-LEDs/chlorine dioxide (ClO2), and UV-LEDs/chloramine (NH2Cl) at 265 nm, 280 nm and 265/280 nm. Results indicated that A. niger biofilms reached initial maturity within 24 h, with matured three-dimensional filamentous structures and conidiospores by 96 h. UV-LEDs combined with chlorine-based disinfectants enhanced A. niger biofilm inactivation compared to UV-LEDs alone and low-pressure UV combined with chlorine-based disinfectants. At an UV fluence of 400 mJ/cm2, log reductions of UV265, UV280, and UV265/280 combined with chlorine-based disinfectants were 2.95-fold, 3.20-fold, and 2.38-fold higher than that of UV265, UV280, and UV265/280, respectively. During the inactivation, A. niger biofilm cells experienced increased membrane permeability and intracellular reactive oxygen species levels, resulting in cellular apoptosis. Extracellular polymeric substances contributed to the higher resistance of biofilms. Regarding electrical energy consumption, the order was: UV-LEDs/ClO2 > UV-LEDs/NH2Cl > UV-LEDs/Cl2. These findings provide insights into the effective utilization of UV-LEDs for fungal biofilm disinfection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.