Abstract

The levels of organic pollutants, in particular polycyclic aromatic hydrocarbons (PAHs), are increasing worldwide, yet we lack clarity on how these pollutants affect microbial communities of different trophic levels, including protists, fungi, and bacteria. Herein, we conducted soil microcosm incubation experiments to investigate the effects of pyrene, a typical PAH, on microbial communities along concentration gradients from 0 to 500 mg kg−1 soil. Protistan communities were more sensitive to pollutants than fungal and bacterial communities, and protistan consumers and phototrophs were the dominant trophic functional groups. In addition, by assessing changes in the diversity and structure of the soil microbiome and ecological networks, we found that the microbial communities, including the protistan community and the two trophic communities composed of protists and their prey, were destabilized with increasing stress and pyrene concentrations. We identified links and complicated relationships between phototrophs, bacteria, and consumers in food webs, which explain the importance of protists in stabilizing the microbial community. Collectively, our work provides novel evidence that protists are considerably sensitive to pollution stress, and caution should be exercised in future evaluations of the protistan and multitrophic communities in polluted soil ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.