Abstract

Sepsis is a life-threatening condition that occurs when the body responds to an infection but subsequently triggers widespread inflammation and impaired blood flow. These pathologic responses can rapidly cause multiple organ dysfunction or failure either one by one or simultaneously. The fundamental common mechanisms involved in sepsis-induced multiple organ dysfunction remain unclear. Here, employing quantitative global and phosphoproteomics, we examine the liver's temporal proteome and phosphoproteome changes after moderate sepsis induced by cecum ligation and puncture. In total, 4593 global proteins and 1186 phosphoproteins according to 3275 phosphosites were identified. To characterize the liver-kidney comorbidity after sepsis, we developed a mathematical model and performed cross-analyses of liver and kidney proteome data obtained from the same set of mice. Beyond immune response, we showed the commonly disturbed pathways and key regulators of the liver-kidney comorbidity are linked to energy metabolism and consumption. Our data provide open resources to understand the communication between the liver and kidney as they work to fight infection and maintain homeostasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call