Abstract

Pulsed-field gradient (PFG) diffusion NMR spectroscopy studies were conducted with several helix-loop-helix regulatory Ca(2+)-binding proteins to characterize the conformational changes associated with Ca(2+)-saturation and/or binding targets. The calmodulin (CaM) system was used as a basis for evaluation, with similar hydrodynamic radii (R(h)) obtained for apo- and Ca(2+)-CaM, consistent with previously reported R(h) data. In addition, conformational changes associated with CaM binding to target peptides from myosin light chain kinase (MLCK), phosphodiesterase (PDE), and simian immunodeficiency virus (SIV) were accurately determined compared with small-angle X-ray scattering results. Both sets of data demonstrate the well-established collapse of the extended Ca(2+)-CaM molecule into a globular complex upon peptide binding. The R(h) of CaM complexes with target peptides from CaM-dependent protein kinase I (CaMKI) and an N-terminal portion of the SIV peptide (SIV-N), as well as the anticancer drug cisplatin were also determined. The CaMKI complex demonstrates a collapse analogous to that observed for MLCK, PDE, and SIV, while the SIV-N shows only a partial collapse. Interestingly, the covalent CaM-cisplatin complex shows a near complete collapse, not expected from previous studies. The method was extended to related calcium binding proteins to show that the R(h) of calcium and integrin binding protein (CIB), calbrain, and the calcium-binding region from soybean calcium-dependent protein kinase (CDPK) decrease on Ca(2+)-binding to various extents. Heteronuclear NMR spectroscopy suggests that for CIB and calbrain this is likely because of shifting the equilibrium from unfolded to folded conformations, with calbrain forming a dimer structure. These results demonstrate the utility of PFG-diffusion NMR to rapidly and accurately screen for molecular size changes on protein-ligand and protein-protein interactions for this class of proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call