Abstract

It has been shown that the mucolytic agent erdosteine (N-carboxymethylthio-acetyl-homocysteine thiolactone, CAS 84611-23-4) has anti-inflammatory and anti-oxidant properties, and an active metabolite I (MET I) containing pharmacologically active sulphydryl group has been found to have a free radical scavenging activity. The aim of this study was to assess the ability of erdosteine metabolite I to protect A549 human lung adenocarcinoma cell against hydrogen peroxide (H2O2)-mediated oxidative stress and oxidative DNA damage. When A549 cells were pre-treated with the active metabolite I (2.5-5-10 microg/ml) for 10-30 min and then exposed to H2O2 (1-4 mM) for two additional hours at 37 degrees C, 5% at CO2, the intracellular peroxide production, reflected by dichlorofluorescein (DCF) fluorescence, decreased in a concentration-dependent manner. Furthermore, using a comet assay as an indicator for oxidative DNA damage, it was found that the metabolite I prevented damage to cells exposed to shortterm H2O2 treatment. The data suggest that this compound is effective in preventing H2O2-induced oxidative stress and DNA damage in A549 cells. The underlying mechanisms involve the scavenging of intracellular reactive oxygen species (ROS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call