Abstract
Corrosion and kinetics of partial electrode reactions on carbon steel St3 with superhydrophobic coatings of three types were studied in 0.5 M NaCl and 50 g/L NaCl +400 mg/L H2S solutions. The investigations were carried out on electrodes made of carbon steel St3 with a chemical composition, wt. %: C – 0.20; Mn – 0.50; Si – 0.15; P – 0.04; S – 0.05; Cr – 0.30; Ni – 0.20; Cu – 0.20, and Fe – 98.36. To obtain the type I coating, the metal surface was textured by an IR laser radiation of nanosecond duration followed by chemisorption of fluorobutylsilane out of a solution in n‐decane. To obtain a coating of type II, a nanoscale composite layer consisting of aggregates of aerosil nanoparticles was applied additionally to the outcome of type I method. To obtain a coating of type III, the metal surface after being textured by the infrared (IR) laser radiation of nanosecond duration was followed by chemisorption of fluoroxy silane. The influence of duration τ of the medium corrosive impact on protective effect of the superhydrophobic coating is considered. It was shown that upon reaching a steady state (after 72 h), the corrosion rate of steel with a superhydrophobic coating of I and II types in a 0.5 M NaCl solution is reduced by 23 ± 3 times compared with unprotected samples. Approximately the same picture is characteristic of electrodes with a coating of type III in a solution of 50 g/L NaCl +400 mg/L H2S.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.