Abstract

The device discovery process is one of the most crucial aspects in real deployments of sensor networks. Recently, several works have analyzed the topic of Bluetooth Low Energy (BLE) device discovery through analytical or simulation models limited to version 4.x. Non-connectable and non-scannable undirected advertising has been shown to be a reliable alternative for discovering a high number of devices in a relatively short time period. However, new features of Bluetooth 5.0 allow us to define a variant on the device discovery process, based on BLE scannable undirected advertising events, which results in higher discovering capacities and also lower power consumption. In order to characterize this new device discovery process, we experimentally model the real device behavior of BLE scannable undirected advertising events. Non-detection packet probability, discovery probability, and discovery latency for a varying number of devices and parameters are compared by simulations and experimental measurements. We demonstrate that our proposal outperforms previous works, diminishing the discovery time and increasing the potential user device density. A mathematical model is also developed in order to easily obtain a measure of the potential capacity in high density scenarios.

Highlights

  • Wireless communications have been used for more than 30 years to provide secure and cost-effective connectivity for data networking, industrial automation, motion control, remote monitoring and other applications

  • In [13], we did this for the case of non-connectable and non-scannable undirected advertising events, whereas in this article we present the results of characterization of scannable undirected advertising events, which has given rise to a new mathematical model, which closely meets scannable undirected advertising event particularities of real devices, and was developed in order to obtain a measure of the potential capacity in dense scenarios

  • We have structured the paper in the following way: first we present a brief Bluetooth Low Energy (BLE) overview focusing on scannable undirected advertising events and the new discovery procedure proposal

Read more

Summary

Introduction

Wireless communications have been used for more than 30 years to provide secure and cost-effective connectivity for data networking, industrial automation, motion control, remote monitoring and other applications. The number of devices interacting with each other is increasing, while wireless connectivity standards involved in the IoT paradigm (typically short-range, low-power wireless technologies such as Bluetooth, 802.15.4/ZigBee, 802.15.4/6LoWPAN, IEEE 802.11 wireless-local-area-network (WLAN) standards and proprietary technologies) are continually evolving to provide more reliability and power efficiency. Since version 4.0, with the introduction of BLE, Bluetooth has turned into an ultra-low power wireless technology suitable to be used within the IoT scenario. Nowadays, it is considered an attractive technology for a wide range of applications, including smarthealth, sport and fitness applications, domotics, home electronics, security, intelligent transportation systems, etc. It is considered an attractive technology for a wide range of applications, including smarthealth, sport and fitness applications, domotics, home electronics, security, intelligent transportation systems, etc. [2,3,4,5,6]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call