Abstract
Breast cancer remains a leading cause of cancer-related deaths among women, emphasizing the critical need for early detection and monitoring techniques. Conventional imaging modalities such as mammography, MRI, and ultrasound have face sensitivity, specificity, cost, and patient comfort limitations. This study introduces a handheld Near-Infrared Diffuse Optical Tomography (NIR DOT) probe for breast cancer imaging. The NIRscan probe utilizes multi-wavelength light-emitting diodes (LEDs) and a linear charge-coupled device (CCD) sensor to acquire real-time optical data, reconstructing cross-sectional images of breast tissue based on scattering and absorption coefficients. With wavelengths optimized for the differential optical properties of tissue components, the probe enables functional imaging, distinguishing between healthy and malignant tissues. Clinical evaluations have demonstrated its potential for precise tumor localization and monitoring therapeutic responses, achieving a sensitivity of 94.7% and specificity of 84.2%. By incorporating machine learning algorithms and a modified diffusion equation (MDE), the system enhances the accuracy and speed of image reconstruction, supporting rapid, non-invasive diagnostics. This development represents a significant step forward in portable, cost-effective solutions for breast cancer detection, with potential applications in low-resource settings and diverse clinical environments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have