Abstract
Propofol is a pharmaceutical agent commonly used as an intravenous anesthetic in surgical treatments and a sedative in intensive care. However, it is largely unknown how exposure to propofol affects the proliferation, invasion, and apoptosis of neoplastic cells in esophageal cancer. In this study, we sought to elucidate the impact of propofol exposure on the growth properties of human esophageal cancer cell lines in vitro. We treated two human esophageal cancer cell lines, KYSE30 and KYSE960, with up to 10 µg/mL of propofol for 12-36 h. The treated cells were then analyzed by cell proliferation assay, Matrigel invasion assay, quantification of caspase-3/7 and -9 activities, and cell staining with Annexin V and 7-aminoactinomycin D to detect early apoptosis and cell death, respectively, via flow cytometry. We found that 3-5 µg/mL propofol reduced the growth and Matrigel invasion of both cell lines in a dose-dependent manner. Executioner caspase-3/7, but not caspase-9 involved in intrinsic apoptosis pathway, was activated by cell exposure to 3-5 µg/mL propofol. In addition, 3-5 µg/mL propofol augmented early apoptosis in both cell lines and increased cell death in the KYSE30 cell line. In summary, exposure to propofol, at concentrations up to 5 µg/mL, led to the reduction of cell growth and Matrigel invasion, as well as the augmentation of apoptosis in esophageal cancer cell lines. These data will help define a methodology to safely utilize propofol, a common general anesthetic and sedative, with esophageal cancer patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.