Abstract
Silicon dioxide films have been deposited at low temperatures (200–250 °C) by microwave plasma enhanced decomposition of tetraethylorthosilicate (TEOS). The effects of the presence of oxygen in the discharge in film deposition rate, mechanism, and the physical properties of the films have been investigated. Structural characterization of the deposited films has been carried out by etch rate measurements, infrared transmission spectra, x-ray photoelectron spectroscopy, Auger, and secondary ion mass spectrometry analyses. Films deposited using TEOS and oxygen have confirmed a density comparable to standard silane-based low-pressure chemical vapor deposition and plasma enhanced chemical vapor deposition oxides, nearly perfect stoichiometry, extremely low sodium and carbon content, and the absence of many undesirable hydrogen related bonds. Various electrical properties, viz., resistivity, breakdown strength, fixed oxide charge density, interface state density, and trapping behavior have been evaluated by the characterization of metal–oxide semiconductor capacitors fabricated using deposited oxides. Deposited films on thin native oxides grown by either in situ plasma oxidation or a low temperature thermal oxidation exhibited excellent electrical properties.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have