Abstract
The Wide-Lane (WL) and Narrow-Lane (NL) Uncalibrated Phase Delays (UPDs) are the prerequisites in the traditional Precise Point Positioning (PPP) Ambiguity Resolution (AR). As the generation mechanism of various biases becomes more complex, we systematically studied the impact factors of four satellite systems WL and NL UPDs from the perspective of parameter estimation. Approximately 100 stations in a global network are used to generate the UPDs. The results of different satellite systems show that the estimation method, update frequency, and solution mode need to be treated differently. Two regional networks with different receiver types, JAVAD, and Trimble, are also adopted. The results indicate that the receiver-dependent bias has an influence on UPD estimation. Also, the hardware delays can inhibit the satellite-side UPDs if these receiver-specific errors are not fully deployed or even misused. Furthermore, the temporal stability and residual distribution of NL UPDs are significantly enhanced by utilizing a regional network, with the improvements by over 68% and 40%, respectively. It demonstrates that different network scales exhibit the different implication of unmodeled errors, and the unmodeled errors cannot be ignored and must be handled in UPD estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.