Abstract

Effects of Bi doping in PbTe liquid-phase epitaxial layers grown by the temperature difference method under controlled vapor pressure (TDM-CVP) are investigated. For Bi concentrations in the solution, xBi, lower than 0.2 at.%, an excess deep-donor level (activation energy Ed≈0.03–0.04 eV) appears, and Hall mobility is low. In contrast, for xBi>0.2 at.%, Hall mobility becomes very high, while carrier concentration is in the range of 1017 cm−3. Inductive coupled plasma (ICP) emission analysis shows that, for xBi=1 at.%, Bi concentration in the epitaxial layer is as high as NBi=2.3–2.7 × 1019 cm−3. These results indicate that Bi behaves not only as a donor but also as an acceptor, and the nearest neighbor or very near donor-acceptor (D-A) pairs are formed, so that strong self-compensation of Bi takes place. Carrier concentration for highly Bi-doped layers shows a minimum at a Te vapor pressure of 2.2 × 10−5 torr for growth temperature 470°C, which is coincident with that of the undoped PbTe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call