Abstract

This paper presents a validation of the accuracy of a reduced order model(ROM) and the efficiency of the design optimization using a Proper Orthogonal Decomposition(POD) to transonic wing/fuselage system. Three dimensional Euler equations are solved to extrude snapshot data of the full order aerodynamic analysis, and then a set of POD basis vectors reproducing the behavior of flow around the wing/fuselage system is calculated from these snapshots. In this study, reduced order model constructed through this procedure is applied to several validation cases, and then it is confirmed that the ROM has the capability of the prediction of flow field in the space of interest. Additionally, after the design optimization of the wing/fuselage system with the ROM is performed, results of the ROM are compared with results of the design optimization using response surface model(RSM). From these, it can be confirmed that the design optimization with the ROM is more efficient than RSM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call