Abstract
An increasing number of studies have explored the relationship of long noncoding RNAs (lncRNAs) with cervical cancer, yet the role of LINC00511 in cervical cancer still remains elusive. The current dissertation was intended to explore the effect of LINC00511 on cervical cancer development by regulating phospholipase D1 (PLD1) expression through transcription factor retinoic X receptor alpha (RXRA). Differentially expressed lncRNA and messenger RNA related to cervical cancer were screened by microarray-based expression profiling. Cervical cancer and paracancerous tissues were harvested to determine the LINC00511 expression using reverse transcription-quantitative polymerase chain reaction and western blot analysis. The relationship among LINC00511, PLD1 promoter activity, and RXRA were determined via RNA immunoprecipitation, chromatin immunoprecipitation, and dual-luciferase reporter assays. Proliferation, autophagy, and apoptosis of cervical cancer cells were detected with a series of experiments. Tumor xenograft in nude mice was employed to determine the influence of LINC00511 and PLD1 on tumor formation and growth of cervical cancer in vivo. LINC00511 might influence the occurrence of cervical cancer by upregulating PLD1 expression via recruiting transcription factor RXRA. LINC00511 and PLD1 expressions were remarkably high in cervical cancer tissues and cells. LINC00511 combined with RXRA, and overexpression of LINC00511 in cervical cancer cells elevated PLD1 expression. Si-LINC00511, si-RXRA or si-PLD1 triggered repression of proliferation and promotion of autophagy and apoptosis of cervical cancer cells. In vivo experiment, si-LINC00511, or si-PLD1 inhibited the tumorigenic ability of nude mice. Collectively, this study suggests that LINC00511 acts as an oncogenic lncRNA in cervical cancer via the promotion of transcription factor RXRA-regulated PLD1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.