Abstract

ABSTRACT Modelling land-use/landcover (LULC) change is vital for addressing global environmental and sustainability issues and evaluating various land system scenarios. However, existing geosimulation methodologies for global LULC change fail to account for spatial distortions caused by the Earth’s curvature and do not consider multiple LULC change processes. Thus, this research study proposes an enhanced spherical geosimulation modelling approach that integrates deep learning (DL) to simulate change of multiple classes of LULC process under the shared socioeconomic pathways (SSP) at the global level. Based on the simulation results, the frontiers of urbanization, cropland expansion, and deforestation are indicated to be in developing countries particularly in Asia and Africa. The simulation outputs also reveal 42.5%–63.2% of new urban development would occur on croplands. The proposed modelling approach can serve as a valuable tool for spatial decision-making and environmental policy formulation at the global level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.