Abstract
This paper presents the design details and flight tests validation of printed circuit board fabricated micro gliders. The purpose of the micro glider is to be launched from a super pressure balloon at high altitude, glide to the target position to collect data and upload data to the staying balloon. The mission demand requires the micro glider to finish precise landing with small size and low fabrication cost. To complete this concept, we designed a PCB fabricated aircraft with limited sensors including GPS and IMU. The first part of the article describes the aerodynamic design methods. The second part introduced the control and guidance system design by controlling the roll angle and flight path angle to complete the precise landing. In the simulation results presented in the third part, launch with no wind condition shows desirable precise landing ability. As a contrast, wind direction and magnitude have significant effects on the guidance ability and accuracy. In the last part, two real flight tests conducted in Inner Mongolia of China are described to compare the flight performance with the current aerodynamics and control system design. Returned data indicated the micro gliders could successfully fly at high altitude. The control algorithm can compute the command roll angle only with GPS and IMU, but some design details still need to be improved to achieve precise landing ability.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have