Abstract

To achieve underactuated control, a novel swashplateless rotor configuration of asymmetric inclined hinges which can be driven by periodic sinusoidal torque is studied, hopefully eliminating the conventional swashplate mechanism and multiple actuators. Therefore, the traditional mechanism can be intelligently replaced by software. However, high-frequency torque variation will invariably result in vibration noise and energy loss.Thus it is critical to properly design the swashplateless rotor in order to achieve a control process with less torque variation. As a result, in both numerical simulation and experiments, we performed sensitivity analyses on related design parameters such as hinge eccentricity, hinge inclined angle, and wingtip hammer position. The parameter effect on swashplateless rotor control was discovered through the analyses, and the basic law of its design was obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call