Abstract

Through the one-step plasma oxidation of TiN thin films at room temperature (a simple semiconductor technology compatible method), a partly oxidised structure of titanium oxynitride (TiN(x)O(y)) with a TiO(2-x) nanolayer on top has been prepared for non-volatile resistive switching memory devices. The fabricated Pt/TiO(2-x)/TiN(x)O(y)/TiN memory devices demonstrate complementary resistive switching behaviours within an operation voltage of 1 V. The complementary resistive switching behaviours can be explained by redistribution of the oxygen vacancies between the Pt/TiO(2-x) top interface and the TiO(2-x)/TiN(x)O(y) bottom interface in the TiO(2-x) nanolayer. A model concerning the resistive switching mechanism as well as a recover program of a failed device is also proposed. Our work provides a possible cost-efficient solution to suppress the sneak-path problem in nanoscale crossbar memory arrays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call