Abstract
Climate change could be exacerbated by waste disposal problems, which destroy the ecosystem. Utilizing waste byproducts in creating eco-friendlier geopolymer concrete was hypothesised to be suitable and sustainable to overcome the negative impacts of wastes. The researchers had missed out on developing an alternate binder due to increasing demand for fly ash, high alkaline activators, and higher curing temperatures. This research used waste wood ash that is readily accessible in local restaurants and has an inherent potassium constituent. It has decided to replace the fly ash with waste wood ash obtained through nearby restaurants at intervals of 10 percent. The fresh and mechanical features have been discovered over long curing periods to assess the impact of waste wood ash. SEM and XRD have been used for characterising the microstructure of selected geopolymer mixes. In terms of setting properties and all mechanical parameters, replacing 30 percent waste wood ash produced enhanced results. The optimised mix could be used in geopolymer to replace fly ash and reduce the cost of alkaline activators while also reducing ecosystem damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.