- Research Article
1
- 10.22059/poll.2021.326042.1124
- Oct 1, 2021
- Pollution
- Talib R Abbas + 1 more
Two lab-scale electrodialysis (RED) stacks with different intermembrane spacing were used in this study. Each stack consists of two membrane pairs. Thick intermembrane spacing stack was made of four identical plexiglass sections, with outer dimensions 5 cm * 5 cm * 1.5 cm and an inner cross-section of 3 cm diameter each to construct two diluted solution compartments and two concentrated solution compartments. For the thin intermembrane spacing configuration, four rubber spacers with a thickness of 1 mm and an inner opening of 3 cm each were used instead of these sections. Two copper sheets were used as anode and cathode electrodes. Different solutions with NaCl concentrations of 15,000, 30,000 and 200,000 mg/l were used as a concentrated solution and different solutions with relatively low NaCl concentrations of 25, 1000 and 3600 mg/l were used as a diluted solution. A 30,000 mg/l NaCl solution was used as a diluted solution when the concentrated stream was with NaCl concentration of 200,000 mg/l. The electrode solution was of 15,000 mg/l (~0.25 M) NaCl and 8,000 mg/l (~0.05 M) CuSO4.5H2O. The results of this study confirmed the validity of using RED technology to harvest energy from salinity gradient using saline and freshwater available abundantly particularly in Iraq. An experiment on a synthetic hypersaline oil field co-produced water as a concentrated stream and seawater as a diluted stream showed that the system performance is reproducible and stable. A maximum power density of 0.029 W/m2 could be harvested.
- Research Article
8
- 10.22059/poll.2021.320857.1039
- Oct 1, 2021
- Pollution
- Kadarkarai Arunkumar + 4 more
Climate change could be exacerbated by waste disposal problems, which destroy the ecosystem. Utilizing waste byproducts in creating eco-friendlier geopolymer concrete was hypothesised to be suitable and sustainable to overcome the negative impacts of wastes. The researchers had missed out on developing an alternate binder due to increasing demand for fly ash, high alkaline activators, and higher curing temperatures. This research used waste wood ash that is readily accessible in local restaurants and has an inherent potassium constituent. It has decided to replace the fly ash with waste wood ash obtained through nearby restaurants at intervals of 10 percent. The fresh and mechanical features have been discovered over long curing periods to assess the impact of waste wood ash. SEM and XRD have been used for characterising the microstructure of selected geopolymer mixes. In terms of setting properties and all mechanical parameters, replacing 30 percent waste wood ash produced enhanced results. The optimised mix could be used in geopolymer to replace fly ash and reduce the cost of alkaline activators while also reducing ecosystem damage.
- Research Article
- 10.22059/poll.2021.322969.1075
- Oct 1, 2021
- Pollution
- Saadat Aghajari + 3 more
Mineralogy studies can help understand the interactions of geographical, environmental, and geological factors. Considering frequent occurrence of urinary tract stones in the south and west of Iran, the present paper examines trace elements, like heavy metals, in 53 urine stone samples collected from patients in Lorestan Province. It investigates the mineralogy of the stones, using X-ray diffraction. The samples are then classified into five mineral groups (calcium oxalate, urate, cysteine, calcium oxalate-urate, and calcium oxalate/phosphate). Results from this analysis are confirmed by SEM images, showing the crystalline form of the mineral phases. The microscopic studies show that only the mineral group of calcium oxalate (whewellite) could be detected in thin sections, prepared from urinary tract stone samples. The main and trace elements in each group are determined through ICP-MS method with the results showing that calcium is the most abundant substance in urinary tract stones, compared to other elements. This is caused by the role of calcium in most basic functions of cell metabolism. The correlation between magnesium and strontium is 0.64, originated from the placement of high amounts of strontium in calcium oxalate minerals. The positive correlation between sodium and calcium also indicates that sodium is replaced by calcium due to the similarity of the ionic radius in the crystal structure. Results from this study can help us find the causes behind the frequent occurrence of urinary tract stones in Lorestan Province.
- Research Article
- 10.22059/poll.2021.321814.1059
- Oct 1, 2021
- Pollution
- Nabanita Ghosh + 7 more
Exposure to airborne particulates is a major occupational hazard especially for outdoor workers who spending time outdoors at ground level getting exposed to traffic fumes and roadside dust. Aim of this study was to assess respiratory health symptoms and determine the change of lung functions of the roadside vendors and its association with traffic-related exposures and their working experience. A cross-sectional study was conducted in key market places of Kolkata – Gariahat (GH), Esplanade-Park Street (EP), Shyambazar-Hatibagan (SH) and Behala (BE). Particulate (PM10 and PM2.5) levels and meteorological parameters (wind speed, temperature and relative humidity) were monitored in the morning, afternoon and night over the period of October 2019 to February 2020. Lung function status (FEV1, FVC, FEV1/FVC ratio and PEF) was measured for 111 purposively selected participants. PM concentration was observed higher in the morning and night peak hours for all sites. At SH area the average occupational exposure level for PM10 and PM2.5 were observed as 1502.22 μg/m3h and 684.01 μg/m3h. Percentage predicted FEV1 (%FEV1) of street vendors was found decreasing with their work experience and the worst-case scenario was observed in the EP area, with the corresponding value being 70.75%, 49.15% and 47.3% for less than 10 years, 10 to 20 years and more than 20 years participation respectively. The higher particulate burden was observed to have declining lung function status of the street vendors. A strong policy framework should be adopted to improve outdoor working environment for outdoor workers.
- Research Article
3
- 10.22059/poll.2021.325794.1118
- Oct 1, 2021
- Pollution
- Mohmadisa Hashim + 5 more
Trends in water quality, either increasing or decreasing over the long term, are becoming an essential guide to understanding water quality. This study aims to analyse the trends in water quality in the upstream part of the Bernam River Basin, Malaysia from 1998 to 2018. This study involved the collection of data on water quality from the Department of Environment, Malaysia. Six main parameters of the water quality index (WQI) were chosen, including the dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N), total suspended solids (TSS) and pH. The analysis methods applied are the Mann-Kendall test and Sen’s estimator of slope. The results of the WQI value trend analysis revealed that most stations have decreasing trends. A trend analysis of the parameters found that most stations had increasing trends for the DO, BOD, NH3-N and pH parameters, while decreasing trends for the COD and TSS parameters were observed. An increasing trend indicated that the water quality parameters were getting better, and a decreasing trend indicated the opposite. This study will benefit the parties responsible for planning and monitoring developments to reduce water pollution around the upstream Bernam River Basin. In the upstream of Bernam River Basin, land use changes have occurred rapidly, especially forest areas have been explored for human settlements, agricultural and industrial activities. Thus, the sustainability of the river basin can be maintained and valued by the various parties in the future. The river basin is also important as a domestic water supply for the residents of Selangor and Perak.
- Research Article
1
- 10.22059/poll.2021.321954.1062
- Oct 1, 2021
- Pollution
- Shahram Baikpour + 1 more
Drilling operations release considerable amounts of drilling fluids that contain pollutants such as heavy metals and hydrocarbons. By means of the ICP-OES device, the concentration of metals in the drilling mud deposited in the accumulation pools (around the drill rigs), the drilling mud used in the well (initial, input, and output mud), the soil around the drilling rig, and the control sample can be determined. Comparison of metal accumulation volume with current standards (upper crust and the region’s soil) indicates that the initial drilling mud contains As, Cd, Mo, Cu, and Ag metals. Also, the outflow and associated cuttings are contaminated with Sb, showing a geological formation origin for this metal. In case of Pb, Ba, Cr, and Mn, the level of contamination is in a medium range wherein the source of the contamination is recycled mud and drilling rocks in the previous phases. Contamination of other metals is evaluated in the low range. Geo-accumulation index (Igeo), Enrichment Coefficient (EF), and Contamination Factor (CF) are used to determine the level of pollution. Results show that As, Pb, Ba, Mn, Mo, Cd, Co, Cu, and Zn have caused a lot of pollution in the area and their amounts should be controlled.
- Research Article
2
- 10.22059/poll.2021.325185.1111
- Oct 1, 2021
- Pollution
- Asma Esmaeilzade Ashini + 2 more
This study was performed to determine the chemical compositions and heavy metals in the muscle of Scomberomorus commerson from the Oman Sea, during the two seasons, pre-monsoon and post-monsoon in 2018. The protein, fat, moisture, and ash contents were determined by AOAC (Association of Official Analytical Chemists) methods. Heavy metal (Zn, Cu, and Pb) analyses were performed by atomic absorption spectrophotometer after acid digestion. There were significant differences between protein, fat, moisture, and ash values in muscle tissue in two seasons (P Cu>Pb. The amounts of Zn, Cu, and Pb were below maximum permissible limits (MPL) recommended by international standards (FAO, FAO/WHO, and MAFF). Results revealed that estimated daily and weekly intakes of Zn, Cu, and Pb were far below the permissible tolerable daily intake (PTWI) recommended by FAO/WHO. Therefore, consumption of S. commerson in the pre and post-monsoon has no risks for human health in the Oman Sea.
- Research Article
- 10.22059/poll.2021.324387.1100
- Oct 1, 2021
- Pollution
- Mahin Saedpanah + 2 more
The present study aims at investigating land use changes (as one of the effective human factors on water systems) as well as its relation with water quality at spatial scales of the entire basin, sub-basin and defined buffers (10 and 15 km) in Zayandeh-Rud Basin, Isfahan, Iran. By means of supervised classification method along with maximum likelihood algorithm, it classifies the land use map into five categories, including agriculture, bare lands, urban areas, vegetation, and water. The research collects data for 11 water quality parameters in seven sampling stations of Zayandeh-Rud Basin in 2002, 2009, and 2015 from Isfahan Water and Sewerage Organization. Correlation analysis is then conducted to investigate the effect of land use changes on water quality at different spatial scales. Land use analysis in the entire basin shows that despite an increase in urban and agricultural lands from 2002 to 2015, bare lands, vegetation, and water covers have had a decreasing trend. Moreover, various land uses at different scales show some correlation with water quality parameters. The strongest correlations in this study belong to sub-basin scale. Therefore, it is recommended to use this spatial scale to investigate the relation between land use and water quality parameters
- Research Article
4
- 10.22059/poll.2021.325135.1110
- Oct 1, 2021
- Pollution
- Tapos Kumar Chakraborty + 8 more
This study analyzed the potential use of Mahagoni wood charcoal (MWC) and Mahagoni bark charcoal (MBC) as biosorbent for reactive red 120 (RR 120) dye removal from aqueous solutions. The effect of different operating parameters such as contact time (1–210 min), pH (3–11), adsorbent dose (1–20 g/L), and initial RR 120 concentration (5–70 mg/L) on adsorption processes was studied under batch adsorption experiments. The maximum removal of RR 120 by MWC (78%) and MBC (88%) was achieved when the optimum conditions were initial RR 120 concentration (5 mg/L), pH (3), adsorbents dose (10 g/L) and equilibrium contact time (150 min). The RR 120 adsorption data of MWC and MBC were better described by the Langmuir and Freundlich isotherm models, respectively. The MWC and MBC showed maximum adsorption capacities of 3.806 and 5.402 mg/g, respectively. Kinetic adsorption data of all adsorbents (MWC and MBC) followed the pseudo-second-order model and this adsorption process was controlled by chemisorption with multi-step diffusion. A lower desorption rate advocated that both strong and weak binding forces could exist between RR 120 molecules and adsorbents. The study results revealed that the utilization of either MWC and or MBC as an adsorbent for treating RR 120 is effective and environmentally friendly.
- Research Article
2
- 10.22059/poll.2021.326041.1125
- Oct 1, 2021
- Pollution
- Hülya Koyuncu + 3 more
In this study natural bentonite (NB) and acid-thermal co-modified bentonite (MB) were utilized as adsorbents for the removal of Thymol Blue (TB) from aqueous solution. The batch adsorption experiments were conducted under different experimental conditions. The artificial neural network (ANN) and adaptive neuro fuzzy inference systems (ANFIS) were applied to estimate removal percentage (%) of TB. Mean squared error (MSE), root mean square error (RMSE) and coefficient of determination (R2) values were used to evaluate the results. In addition, the experimental data were fitted isotherm models (Langmuir, Freundlich and Temkin) and kinetic models (pseudo first order (PFO), pseudo second order (PSO) and intra-particle diffusion (IPD)). The adsorption of TB on both the NB and MB followed well the PSO kinetic model, and was best suited Langmuir isotherm model. When the temperature was increased from 298 K to 323 K for 20 mg/L of TB initial concentration, the removal percentage of TB onto the NB and MB increased from 74.91% to 84.07% and 81.19% to 93.12%, respectively. This results were confirmed by the positive ΔH° values indicated that the removal process was endothermic for both the NB and MB. The maximum adsorption capacity was found as 48.7805 mg/g and 117.6471 mg/g for the NB and MB, respectively (at 323 K). As a result, with high surface area and adsorption capacity, the MB is a great candidate for TB dye removal from wastewater, and the ANFIS model is better than the ANN model at estimating the removal percentage of the dye.