Abstract

Two-dimensional plain-weave silicon carbide fiber fabric reinforced silicon carbide (2D-SiC/SiC) composites were molded by stacking method and densified through precursor infiltration and pyrolysis (PIP) process. SiC coating was deposited as the fiber/matrix interphase layer by chemical vapor deposition (CVD) technique. Fiber/matrix debonding and relatively long fiber pullouts were observed on the fracture surfaces. Additionally, the flexural strength and elastic modulus of the composites with and without fiber/matrix interphase layer were investigated using three-point bending test and single-edge notched beam test. The results show that the fiber fraction and the porosity of 2D-SiC/SiC composites with and without coating are 27.2% (volume fraction) and 11.1%, and 40.7% (volume fraction) and 7.5%, respectively. And the flexural strength and elastic modulus of 2D-SiC/SiC composites with and without coating are 363.3 MPa and 127.8 GPa, and 180.2 MPa and 97.2 GPa, respectively. With a proper thickness, the coating can effectively adjust the fiber/matrix interface, thus causing a dramatic increase in the mechanical properties of the composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.