Abstract
This work investigates the effects of various processing parameters (laser power, scanning speed, hatch distance and beam offset) on the resultant inclined up-facing surface roughness of AlSi10Mg alloys produced by laser powder bed fusion (LPBF). A two-step approach, orthogonal test followed by the Doehlert matrix design (DMD) test is used to efficiently optimize the up-facing surface and contour parameters. The former method aims to determine the significance of variables while the latter one facilitates a rapid optimization. The results show that the interaction and interdependency among the parameters are of great significance to the obtainable surface roughness. Using a rational design of experiments, the optimized up-facing surface roughness of Ra of 5.4 μm is achieved. This is attributed to the elimination of the laser partition track and the reduction in irregularities at the edges of the parts. This work demonstrates an effective approach of experimental processing parameter optimization to improve the surface finish of LPBF parts.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have