Abstract
As a typical laser additive manufacturing technology, laser powder bed fusion (LPBF) has achieved demonstration applications in aerospace, biomedical and other fields. However, how to select process parameters quickly and reasonably is still the main concern of LPBF production. In order to quantitatively analyze the inuence of different process parameters (laser power, scanning speed, hatch space and layer thickness) on the LPBF process, the multi-layer and multi-path forming process of LPBF was predicted based on the open-source discrete element method framework Yade and the open-source finite volume method framework OpenFOAM. Based on the design of experiments method, a four-factor three-level orthogonal test scheme was designed, and the porosity and surface roughness data of each calculation scheme were extracted. By analyzing the orthogonal test data, it was found that as the laser power increased, the porosity decreased, and as the scanning speed, hatch space, and layer thickness increased, the porosity increased. In addition, the inuence of laser power and scanning speed on surface roughness showed a trend of decreasing first and then increasing, while the inuence of scanning distance and layer thickness on surface roughness showed a monotonous increasing trend. The order of the inuence of each process parameter on porosity was: scanning speed > laying thickness > laser power > hatch space, and the order of the inuence of each process parameter on surface roughness was: hatch space > layer thickness > laser power > scanning speed. So the porosity of the part is most sensitive to scanning speed, and the surface roughness is the most sensitive to hatch space. The above conclusions are expected to provide process control basis for actual LPBF production of the 316L stainless steel alloy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.