Abstract

The micro-electrical discharge machining (micro-EDM) process has proved to be an appropriate nonconventional machining method for manufacturing accurate and complex three-dimensional structural micro-features which are difficult to be produced by conventional processes. However, the miniaturisation of the EDM process requests special requirements on the machining equipment. Pulse generators which can produce small input energy pulses and high precision systems are the two major requirements. In this paper, newly developed technologies regarding these aspects are explored with the aid of a commercial micro-EDM machine. By examining the pulses, innovative strategies implemented in the pulse generator are studied. Pulse measurements reveal the correlation between the discharge pulses and the machine parameters in order to provide an overview of process capability. Conclusions are applied on machining of a ceramic composite Si3N4-TiN and optimised machining settings for different machining conditions are achieved. Accordingly, applications of two- and three-dimensional micro-structures on different types of materials such as a stainless steel micro-compressor and a ceramic miniature gas turbine are demonstrated. By inspecting the machining geometry and surface integrity, process characteristics of micro-EDM are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.