Abstract

Micro-electric discharge machining (μ-EDM) is a very complex phenomenon in terms of its material removal characteristics since it is affected by many complications such as adhesion, short-circuiting and cavitations. This paper presents a new method for monitoring μ-EDM processes by counting discharge pulses and it presents a fundamental study of a prognosis approach for calculating the total energy of discharge pulses. For different machining types (shape-up and flat-head) and machining conditions (mandrel rotation and tool electrode vibration), the results obtained using this new monitoring method with the prognosis approach show good agreement between the discharge pulses number and the total energy of discharge pulses to the material removal and tool electrode wear characteristic in μ-EDM processes. On applying tool electrode vibration, the machining time becomes shorter, because it removes adhesion. The effect of tool electrode vibration in order to remove adhesion can be monitored with good results. In order to achieve high accuracy, the tool wear compensation factor has been successfully calculated, since the amount of tool electrode wear is different in each machining type and condition. Consequently, a deeper understanding of the μ-EDM process has been achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.