Abstract

Metal Matrix Composites (MMCs) have been found to be useful in a number of engineering applications and particle reinforced MMCs have received considerable attention due to their excellent engineering properties. These materials are generally regarded as extremely difficult to machine, because of the abrasive characteristics of the reinforced particulates. These characteristics of MMCs affect the machined surface quality and integrity. This paper presents use of Taguchi Grey Relational Analyses (GRA) for optimization of Al/SiCp/10p (220 and 600 mesh) MMCs produced by stir casting. Experiments are performed using L16 orthogonal array by using hot machining technique. The objective of this study is to identify the optimum process parameters to improve the surface integrity on Al/SiCp MMCs. The machined surface integrity has been analyzed by process parameters such as speed, feed, depth of cut and preheating temperature. The significance of the process parameters on surface integrity has been evaluated quantitatively by the analysis of variance (ANOVA) method and AOM plots. The grey relational analysis shows optimum machining conditions as 0.05 mm/rev feed, 0.4 mm depth of cut and 60 °C preheating temperature to enhance surface integrity for both Al/SiCp/10p (220 and 600 mesh) MMCs except for cutting speed 50 and 25 m/min respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.