Abstract

The present study aimed to suggest a simple and environmentally friendly biosynthesis method of silver nanoparticles (AgNPs) using the strain Bacillus sonorensis MAHUQ-74 isolated from kimchi. Antibacterial activity and mechanisms of AgNPs against antibiotic-resistant pathogenic strains of Escherichia coli O157:H7 were investigated. The strain MAHUQ-74 had 99.93% relatedness to the B. sonorensis NBRC 101234T strain. The biosynthesized AgNPs had a strong surface plasmon resonance (SPR) peak at 430 nm. The transmission electron microscope (TEM) image shows the spherical shape and size of the synthesized AgNPs is 13 to 50 nm. XRD analysis and SAED pattern revealed the crystal structure of biosynthesized AgNPs. Fourier transform infrared spectroscopy (FTIR) data showed various functional groups associated with the reduction of silver ions to AgNPs. The resultant AgNPs showed strong antibacterial activity against nine E. coli O157:H7 pathogens. Minimum inhibitory concentration (MIC) values of the AgNPs synthesized by strain MAHUQ-74 were 3.12 μg/mL for eight E. coli O157:H7 strains and 12.5 μg/mL for strain E. coli ATCC 25922. Minimum bactericidal concentrations (MBCs) were 25 μg/mL for E. coli O157:H7 ATCC 35150, E. coli O157:H7 ATCC 43895, E. coli O157:H7 ATCC 43890, E. coli O157:H7 ATCC 43889, and E. coli ATCC 25922; and 50 μg/mL for E. coli O157:H7 2257, E. coli O157: NM 3204-92, E. coli O157:H7 8624 and E. coli O157:H7 ATCC 43894. FE-SEM analysis demonstrated that the probiotic-mediated synthesized AgNPs produced structural and morphological changes and destroyed the membrane integrity of pathogenic E. coli O157:H7. Therefore, AgNPs synthesized by strain MAHUQ-74 may be potential antibacterial agents for the control of antibiotic-resistant pathogenic strains of E. coli O157:H7.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call