Abstract

Continuous-fiber-reinforced composite lattice structures (CFRCLSs) have garnered attention due to their lightweight and high-strength characteristics. Over the past two decades, many different topological structures including triangular, square, hexagonal, and circular units were investigated, and the basic mechanical responses of honeycomb structures under various load conditions, including tension, compression, buckling, shear, and fatigue were studied. To further improve the performance of the honeycombs, appropriate optimizations were also carried out. However, the mechanical properties of a single lattice often struggle to exceed the upper limit of its structure. This paper investigates the effect of permutation and hybrid mode on the mechanical properties of CFRCLSs by comparing five structures: rhomboid (R-type), octagon orthogonal array (OOA-type), octagon hypotenuse array (OHA-type), octagon nested array (ONA-type), and rhomboid circle (RC-type), with the conventional hexagonal structure (H-type). CFRCLS samples are fabricated using fused filament fabrication (FFF), with carbon-fiber-reinforced polylactic acid (PLA) as the matrix. The in-plane compression properties, energy absorption characteristics, and deformation behaviors of the hybrid structures were studied by experimental tests. The results demonstrate that different permutation and hybrid modes alter the deformation behaviors and mechanical properties of the structures. Taking elastic modulus as an example, the values of H-type, R-type, OOA-type, OHA-type, ONA-type, and RC-type are, respectively, 6.08 MPa, 5.76 MPa, 19.0 MPa, 10.3 MPa, 31.7 MPa, and 73.2 MPa, while the ratio of their masses is 1:1:1.10:1.52:1.66. Furthermore, hybrid lattice structures exhibit significantly improved mechanical properties compared to single lattice structures. Compared to the single structure R-type, the RC-type increases elastic modulus, yield strength, and energy absorption, respectively, by 12.7 times, 5.4 times, and 4.4 times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.