Abstract
Limosilactobacillus reuteri DSM 17938 (L. reuteri DSM 17938) was one of the most widely used probiotics in humans for gastrointestinal disorders, but few studies have investigated its role in drug-induced liver injury (DILI). Here, we evaluated the efficacy of L. reuteri DSM 17938 using a mouse model of DILI induced by triptolide. Pregavage of L. reuteri DSM 17938 for 1 week remarkably lowered hepatic inflammatory cytokines level and oxidative stress, with diminished serum alanine transaminase and aspartate aminotransferase levels. Metabolomics and RT-qPCR analysis confirmed its ability in ameliorating TP-disrupted hepatic fatty acid β oxidation. Genome annotation of L. reuteri showed its ability to modulate energy metabolism. Targeted metabolomics demonstrated that L. reuteri DSM 17938 modified the short fatty acid profiles in cecum, especially enhancing propionate levels. Further experiments found that L. reuteri DSM 17938 can activate AMPK signaling by upregulating gut microbiota-derived propionate level, thus restoring impaired mitochondrial biogenesis and energy supply processes to recover energy homeostasis, which leads to diminished ROS production and oxidative stress injury in hepatocytes. Besides, AMPK inhibitor dorsomorphin abolished all the effects on propionate protecting mitochondria and energy metabolism. This study established probiotic therapy of L. reuteri DSM 17938 as a preventive intervention for DILI in clinical. We also revealed that L. reuteri DSM 17938 can activate AMPK signaling by propionate, facilitating a deeper understanding of the action mechanism of L. reuteri DSM 17938 against acute liver injury and contributing to the development of its postbiotics and wider applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have