Abstract
The microstructure of solution‐processed organometallic lead halide perovskite thin films prepared by the “gas‐assisted” method is investigated with synchrotron‐based techniques. Using a combination of GIWAXS and NEXAFS spectroscopy the orientational alignment of CH3NH3PbI3 crystallites and CH3NH3+ cations are separately probed. The GIWAXS results reveal a lack of preferential orientation of CH3NH3PbI3 crystallites in 200–250 nm thick films prepared on both planar TiO2 and mesoporous TiO2. Relatively high efficiencies are observed for device based on such films, with 14.3% achieved for planar devices and 12% for mesoporous devices suggesting that highly oriented crystallites are not crucial for good cell performance. Oriented crystallites however are observed in thinner films (≈60 nm) deposited on planar TiO2 (but not on mesoporous TiO2) indicating that the formation of oriented crystallites is sensitive to the kinetics of solvent evaporation and the underlying TiO2 morphology. NEXAFS measurements on all samples found that CH3NH3+ cations exhibit a random molecular orientation with respect to the substrate. The lack of any NEXAFS dichroism for the thin CH3NH3PbI3 layer deposited on planar TiO2 in particular indicates the absence of any preferential orientation of CH3NH3+ cations within the CH3NH3PbI3 unit cell for as‐prepared layers, that is, without any electrical poling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.