Abstract

The surface/interface species in perovskite oxides play essential roles in many novel emergent physical phenomena and chemical processes. With low eigen-energies in the terahertz region, such species at buried interfaces remain poorly understood due to the lack of feasible surface-specific spectroscopic probes to resolve the resonances. Here, we show that polarized phonons and two-dimensional electron gas at the interface can be characterized using surface-specific nonlinear optical spectroscopy in the terahertz range. This technique uses intra-pulse difference frequency mixing process, which is allowed only at the surface/interface of a centrosymmetric medium. Submonolayer sensitivity can be achieved using the state-of-the-art detection scheme for the terahertz emission from the surface/interface. Through symmetry analysis and proper polarization selection, background-free Drude-like nonlinear response from the two-dimensional electron gas emerging at the LaAlO 3 /SrTiO 3 or Al 2 O 3 /SrTiO 3 interface was successfully observed. The surface/interface potential, which is a key parameter for SrTiO 3 -based interface superconductivity and photocatalysis, can now be determined optically in a nonvacuum environment via quantitative analysis on the phonon spectrum that was polarized by the surface field in the interfacial region. The interfacial species with resonant frequencies in the THz region revealed by our method provide more insights into the understanding of physical properties of complex oxides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call