Abstract

Mitochondrial dysfunction is associated with increased viscosity and reactive oxygen species (ROS) levels. As an effective antioxidant, sulfur dioxide (SO2) can actively scavenge excess ROS to regulate the redox state and protect cells from oxidative stress. However, few studies have evaluated the connection between viscosity and SO2 during mitochondrial dysfunction. Herein, a water-soluble fluorescent probe (MBI) is designed and synthesized for dual-detecting SO2 and viscosity. The probe rapidly detects SO2 within 12 s based on Michael's addition reaction. Meanwhile, increasing viscosity further inhibits the intramolecular rotation, causing the probe to show a greatly enhanced fluorescence. Probe MBI possesses mitochondria targeting capability due to its quaternary ammonium salt. More importantly, probe MBI successfully supports SO2 and viscosity imaging in living cells and can effectively monitor them during mitochondrial dysfunction and cell apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call