Abstract

In this study, a probabilistic planning approach is proposed for optimally allocating different types of distributed generator (DG) (i.e. wind-based DG, solar DG and non-renewable DG) into a harmonic polluted distribution system so as to minimise the annual energy losses and reduce the harmonic distortions. The proposed planning methodology takes into consideration the intermittent nature of the renewable resources, load profile and the technical constraints of the system. The objective function is the total system annual power loss. The constraints include voltage limits at different buses (slack and load buses) of the system, feeder capacity, total harmonic distortion (THD) limits and maximum penetration limit of DG units. The optimisation process is achieved using the genetic algorithm optimisation method. This proposed approach has been applied to a typical rural distribution system with different scenarios including all possible combinations of distributed energy resources. The simulation results using Matlab programming environment show that significant reductions in the energy losses and THD are achieved for all the proposed scenarios. Also simulation results depict that the proposed method is robust and computationally efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.