Abstract

This paper addresses the optimal distributed generation sizing and siting for voltage profile improvement, power losses, and total harmonic distortion (THD) reduction in a distribution network with high penetration of non-linear loads. The proposed planning methodology takes into consideration the load profile, the frequency spectrum of non-linear loads, and the technical constraints such as voltage limits at different buses (slack and load buses) of the system, feeder capacity, THD limits, and maximum penetration limit of DG units. The optimization process is based on the Genetic Algorithm (GA) method with three scenarios of objective function: system power losses, THD, and multi-objective function-based power losses and THD. This method is executed on the IEEE 31-bus system under sinusoidal and non-sinusoidal (harmonics) operating conditions including load variations within the 24-hr period. The simulation results using Matlab environment show the robustness of this method in optimal sizing and siting of DG, efficiency for improvement of voltage profile, reduction of power losses, and THD. A comparison with particle swarm optimization (PSO) method shows that the proposed method is better than PSO in reducing the power losses and THD in all suggested scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.