Abstract

Obesity that is critically correlated with the initiation and development of metabolic syndrome and cardiovascular diseases has increased worldwide. Adipogenesis is coordinated through multi-steps involving adipogenic commitment, mitotic clonal expansion (MCE) and differentiation. Recently, protein arginine methyltransferase 4 (PRMT4) and PRMT5 have been implicated in modulation of adipogenesis via regulation of C/EBP-β activity or PPAR-γ2 expression. In the current study, we demonstrate a suppressive role of PRMT7 in adipogenesis. PRMT7-depleted preadipocytes or PRMT7−/− mouse embryonic fibroblasts (MEFs) displayed increased adipogenesis while PRMT7 overexpression attenuated it. PRMT7 depletion in preadipocytes promoted MCE, an initial step of adipogenesis. Furthermore, we found that PRMT7 interacted with and methylated a key adipogenic factor C/EBP-β upon adipogenic induction and modulated the accumulation of C/EBP-β at its target sites in the PPAR-γ2 promoter. Taken together, our data suggest that PRMT7 suppresses adipogenesis through modulation of C/EBP-β activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call