Abstract

Surface water provides ecological services such as drinking water supply. However, contaminants of emerging concern (CECs) are rising concerns because they are ubiquitously detected in surface water and pose potential risks to the aquatic environment and human health. This study investigated the occurrence of 165 CECs in surface water from drinking water source areas along the lower reaches of the Yangtze River to prioritize the CECs and to estimate potential biological activity based on exposure-activity ratio (EAR). A total of 70 CECs were detected in the surface water at least once at the selected 17 sampling sites, and their concentrations ranged from 0.592 to 4650 ng/L. Twenty-four CECs were detected at each site, and these were mostly pharmaceutical and personal care products and pesticides. Sucralose, 1H-benzotriazole and carbendazim were the most common CECs with high median concentrations in the study area. Specifically, sucralose, an artificial sweetener, was presented at each site with the highest median concentration (3010 ng/L), which indicated that anthropogenic inputs are an important source of contaminants. Medroxyprogesterone and trenbolone were identified as the priority contaminants of interest, with maximum EARchemical values of 0.389 and 0.183, respectively. Among all the sites, the higher cumulative EARmixture value was found from Nantong City (0.765), which indicated that this site could have a relatively greater potential for biological effects, and these effects were mainly due to medroxyprogesterone and trenbolone. In regard to the bioactivity of all detected CECs, nuclear receptors showed the greatest potential bioactivity in this region, particularly androgen receptor-mediated bioactivity, which is most likely affected organisms residing in the source water area. These results suggest that the drinking water sources from the studied region are contaminated with CECs, and highlight the prioritization of future monitoring and research to protect source waters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.