Abstract
In this paper, we explore the nature of central idempotents of Schur rings over finite groups. We introduce the concept of a lattice Schur ring and explore properties of these kinds of Schur rings. In particular, the primitive, central idempotents of lattice Schur rings are completely determined. For a general Schur ring S, S contains a maximal lattice Schur ring, whose central, primitive idempotents form a system of pairwise orthogonal, central idempotents in S. We show that if S is a Schur ring with rational coefficients over a cyclic group, then these idempotents are always primitive and are spanned by the normal subgroups contained in S. Furthermore, a Wedderburn decomposition of Schur rings over cyclic groups is given. Some examples of Schur rings over non-cyclic groups will also be explored.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.