Abstract

AbstractWe present a family of selfinjective algebras of type D, which arise from the 3-preprojective algebras of type A by taking a $$\mathbb {Z}_3$$ Z 3 -quotient. We show that a subset of these are themselves 3-preprojective algebras, and that the associated 2-representation-finite algebras are fractional Calabi-Yau. In addition, we show our work is connected to modular invariants for SU(3).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.