Abstract
In 1993, Muzychuk [23] showed that the rational Schur rings over a cyclic group Z n are in one-to-one correspondence with sublattices of the divisor lattice of n, or equivalently, with sublattices of the lattice of subgroups of Z n . This can easily be extended to show that for any finite group G, sublattices of the lattice of characteristic subgroups of G give rise to rational Schur rings over G in a natural way. Our main result is that any finite group may be represented as the (algebraic) automorphism group of such a rational Schur ring over an abelian p-group, for any odd prime p. In contrast, over a cyclic group the automorphism group of any Schur ring is abelian. We also prove a converse to the well-known result of Muzychuk [24] that two Schur rings over a cyclic group are isomorphic if and only if they coincide; namely, we show that over a group which is not cyclic, there always exist distinct isomorphic Schur rings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.