Abstract

In this paper, we study the price of Variable Annuity Guarantees, particularly those of Guaranteed Annuity Options (GAO) and Guaranteed Minimum Income Benefit (GMIB), in the settings of a derivative pricing model where the underlying spot (the fund) is locally governed by a geometric Brownian motion with local volatility, while interest rates follow a Hull–White one-factor Gaussian model. Notwithstanding the fact that in this framework, the local volatility depends on a particularly complex expectation where no closed-form expression exists and it is neither directly related to European call prices or other liquid products, we present in this contribution a method based on Monte Carlo Simulations to calibrate the local volatility model. We further compare the Variable Annuity Guarantee prices obtained in three different settings, namely the local volatility, the stochastic volatility and the constant volatility models all combined with stochastic interest rates and show that an appropriate volatility modeling is important for these long-dated derivatives. More precisely, we compare the prices of GAO, GMIB Rider and barrier types GAO obtained by using the local volatility, stochastic volatility and constant volatility models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call