Abstract
This thesis presents our study on using the hybrid stochastic-local volatility model for option pricing. Many researchers have demonstrated that stochastic volatility models cannot capture the whole volatility surface accurately, although the model parameters have been calibrated to replicate the market implied volatility data for near at-the-money strikes. On the other hand, the local volatility model can reproduce the implied volatility surface, whereas it does not consider the stochastic behaviour of the volatility. To combine the advantages of stochastic volatility (SV) and local volatility (LV) models, a class of stochastic-local volatility (SLV) models has been developed. The SLV model contains a stochastic volatility component represented by a volatility process and a local volatility component represented by a so-called leverage function. The leverage function can be roughly seen as a ratio between local volatility and conditional expectation of stochastic volatility. The difficulty of implementing the SLV model lies in the calibration of the leverage function. In the thesis, we first review the fundamental theories of stochastic differential equations and the classic option pricing models, and study the behaviour of the volatility in the context of FX market. We then introduce the SLV model and illustrate our implementation of the calibration and pricing procedure. We apply the SLV model to exotic option pricing in the FX market and compare pricing results of the SLV model with pure local volatility and pure stochastic volatility models. Numerical results show that the SLV model can match the implied volatility surface very well as well as improve the pricing performance for barrier options. In addition, we further discuss some extensions of the SLV project, such as parallelization potential for accelerating option pricing and pricing techniques for window barrier options. Although the SLV model we use in the thesis is not entirely new, we contribute to the research in the following aspects: 1) we investigate the hybrid volatility modeling thoroughly from theoretical backgrounds to practical implementations; 2) we resolve some critical issues in implementing the SLV model such as developing a fast and stable numerical method to derive the leverage function; and 3) we build a robust calibration and pricing platform under the SLV model, which can be extended for practical uses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.