Abstract
This paper describes a two-factor model for a diversified market index using the growth optimal portfolio with a stochastic and possibly correlated intrinsic timescale. The index is modelled using a time transformed squared Bessel process with a log-normal scaling factor for the time transformation. A consistent pricing and hedging framework is established by using the benchmark approach. Here the numeraire is taken to be the growth optimal portfolio. Benchmarked traded prices appear as conditional expectations of future benchmarked prices under the real world probability measure. The proposed minimal market model with log-normal scaling produces the type of implied volatility term structures for European call and put options typically observed in real markets. In addition, the prices of binary options and their deviations from corresponding Black–Scholes prices are examined.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.