Abstract

This paper derives a two-factor model for the term structure of interest rates that segments the yield curve in a natural way. The first factor involves modelling a non-negative short rate process that primarily determines the early part of the yield curve and is obtained as a truncated Gaussian short rate. The second factor mainly influences the later part of the yield curve via the market index. The market index proxies the growth optimal portfolio (GOP) and is modelled as a squared Bessel process of dimension four. Although this setup can be applied to any interest rate environment, this study focuses on the difficult but important case where the short rate stays close to zero for a prolonged period of time. For the proposed model, an equivalent risk neutral martingale measure is neither possible nor required. Hence we use the benchmark approach where the GOP is chosen as numeraire. Fair derivative prices are then calculated via conditional expectations under the real world probability measure. Using this methodology we derive pricing functions for zero coupon bonds and options on zero coupon bonds. The proposed model naturally generates yield curve shapes commonly observed in the market. More importantly, the model replicates the key features of the interest rate cap market for economies with low interest rate regimes. In particular, the implied volatility term structure displays a consistent downward slope from extremely high levels of volatility together with a distinct negative skew.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.